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High-order direct correlation functions of uniform fluids and their application
to the high-order perturbative density functional theory

Shiqi Zhou* and Eli Ruckenstein†

Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, New York, 14260
~Received 24 August 1999!

Simple analytical expressions for the direct correlation functions of uniform fluids of all orders are derived
based on a simple weighted density approximation. The equation thus obtained for the third-order direct
correlation function is in satisfactory agreement with simulation data for uniform hard sphere fluids. The
obtained expressions are employed to derive two general equations for the perturbative density functional
theory of all orders. One of them concerns the direct correlation functions, while the other concerns the direct
correlation functions weighted with the present weighting function. The general equations have been used to
determine the equilibrium structure about a test molecule immersed in a bulk fluid of the same species. The
calculations indicated that both equations with expansions truncated at the fifth order provided for bulk fluids
improvements with respect to the second-order perturbative density functional theory~corresponding to the
hypernetted-chain closure!. The second equation with the bulk density considered as an adjustable parameter,
determined by equating the ‘‘virial pressure’’ calculated for a bulk fluid to the Carnahan-Starling pressure,
provided the best agreement with simulation data. The second equation with an adjusted bulk density was also
used to determine the density profile of a hard sphere fluid in a spherical cavity; good agreement with
simulation data was obtained.

PACS number~s!: 61.20.Gy, 71.15.Mb
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I. INTRODUCTION

Over the past decade the density functional methods,
veloped originally for the study of many electron quantu
systems@1#, has played a key role in providing a comprehe
sive picture of the complex thermodynamic behavior of fl
ids in confined geometries, because of its physical clarity
computational simplicity@2–5#. As quite general approache
to the equilibrium distribution in nonuniform fluids, the de
sity functional theories have proven to be some of the m
successful, widely applicable approaches to a variety of
terfacial phenomena, such as adsorption, wetting, freez
etc. @6–10#. In the density functional approach, the gra
potential of a many particle system is expressed as a un
functional of its local density@11#, and acquires its minimum
value when calculated for the equilibrium density obtain
by solving the corresponding variational problem. In t
functional for the grand potentialV@r(r )#5F id@r(r )#
1Fex@r(r )#1*drr(r )@wext(r )2m#, m is the chemical po-
tential,wext(r ) is the external potential which causes the de
sity distributionr(r ), the ideal-gas free energyF id@r(r )# is
given by the exact relation

F id@r~r !#5b21*drr~r !$ ln@r~r !l3#21%,

wherel5@h2/(2pmb21)#1/2 is the de Broglie wavelength
andb51/kT is the reciprocal temperature. However, the e
act relation for the excess~over the ideal gas contribution!
free energyFex@r(r )# which originates from interparticle in
teractions is not known. Therefore a major effort in the d
velopment of the density functional theory~DFT! has been to
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approximate the functional in terms of the local density
the system. The basic assumption of all density functio
theories is that the thermodynamic potential of a nonunifo
system can be obtained from that of the corresponding
form system. What distinguishes the various theories fr
one another is the detailed manner in which each formula
the link between the two. The existing DFTs fall mainly in
two categories:~1! the weighted~nonperturbative! density
functional theories~WDFT! and ~2! the perturbative density
functional theories~PDFT!. In the former, physically moti-
vatedad hocassumptions were made to render the exc
free energy of the inhomogeneous system calculable;
was done by constructing an approximation of the local
global excess free energy by mapping the excess free en
per particle or the correlation function of the inhomogeneo
system to that of a uniform system with an effective
weighted local density. The WDFT approaches have b
mostly employed to predict the structure of a one-compon
fluid near one or between two walls@12,13#, and some of
them have been extended to binary mixtures@14–16#, elec-
trolyte solutions@17,18#, colloidal dispersions@19,20#, and
also to the study of freezing@21,22# etc. These WDFTs have
achieved some success in predicting results in good ag
ment with computer simulations for hard sphere fluids, b
they are computationally demanding. Furthermore, mos
the WDFTs@23,24# fail, to a greater or lesser extent, whe
applied to more realistic potentials such as the inverse-po
and Yukawa potentials. In the perturbative density functio
theories~PDFT!, the excess free energy of the inhomog
neous system is functionally expanded about that of the
responding uniform system

bFex@r#5bFex~rb!2 (
n51

}
1

n! E dr1¯E drn

3C0
~n!~r1 ,...,rn ;rb!¹r~r1!¯¹r~rn!, ~1!
2704 ©2000 The American Physical Society
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PRE 61 2705HIGH-ORDER DIRECT CORRELATION FUNCTIONS OF . . .
where¹r(r )5r(r )2rb is the departure of the density from
the densityrb of a uniform system andC0

(n) are then order
direct correlation functions~DCFs! of the uniform system. In
most applications of the theory the expansion has been t
cated at the second order due to the lack of information
garding the higher-order direct correlation functions for t
uniform system. The second order PDFT has been critici
by Cutrin @25# and Baus and Colot@26#, who demonstrated
that the perturbative expansion is slowly convergent for h
sphere fluids. In applications to systems characterized by
potentials such asf(r );r 2n, the second order PDFT ha
proven even less adequate@27#; in application to the one-
component plasma@28#, the second order PDFT failed t
predict a freezing transition at all. These results pointed
the need for a detailed analysis of the form and behavio
the higher-order direct correlation functions that reside in
omitted terms. In this respect, Barrat, Hansen, and Pas
~BHP! @29# have suggested an approximation forC0

(3) based
on the factorization: C0

(3)(r ,r 8;rb)5t(r )t(r 8)t(ur2r 8u),
with t(r ) determined by requiring thatC0

(3)(r ,r 8;rb) should
satisfy, in the Fourier space, forn53, the exact relation

C0
~n!~k1 ,...,kn21,0;rb!5

]

]rb
C0

~n21!~k1 ,...,kn21 ;rb!

n>2. ~2!

Later, Curtin and Ashcroft@30# suggested an approximatio
for C0

(3)(r ,r 8;rb) based on a weighted-density approxim
tion ~WDA! for the excess free energy functional of an i
homogeneous system, while Denton and Ashcroft@31#
proposed approximate analytical expressions
C0

(n)(r1 ,r2 ,...,rn ;rb) with n53,4,5 based on the WDA fo
the first-order direct correlation function of an inhomog
neous system@16#. These three approaches have equival
accuracies and theC0

(3)(r ,r 8 ;rb) thus calculated were in
agreement with simulation data. Among these three
proaches, the first required the numerical solution of an
tegral equation, the second a solution of a differential eq
tion in the Fourier space, while the third became ve
complicated when extended to higher-order direct correla
functionsC0

(n)(r1 ,r2 ,...,rn ;rb) with n.5. Recently, Khein
and Ashcroft@32# proposed a symmetric algebraic ansatz
C0

(3)(r ,r 8;rb) which provided satisfactory agreement wi
simulation data. All the above approaches have not b
used in the PDFTs approaches mainly because the resu
approximations for high-order direct correlation functio
are computationally demanding. Therefore there is a need
simple, analytical expressions forC0

(n)(r1 ,r2 ,...,rn ;rb) for
all n which can be conveniently employed to develop
PDFT approach beyond the second order. This is the m
vation of this paper.

The plan of the present paper is as follows:
Sec. II, approximate analytical expressions for

C0
~n!~r1 ,r2 ,...,rn ;rb!

for all n are derived based on a simple weighted den
approximation~SWDA! @33#; the predictions of the expres
sion obtained for the third order direct correlation function
a uniform hard sphere fluid are compared with simulat
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data, and the behavior of the higher order direct correlat
functions is examined~no simulation data are available i
literature for comparison!. In Sec. III, the obtained expres
sions allow to derive two general PDFT equations for
orders, which are employed to determine the equilibriu
structure about a test particle immersed in a bulk hard sph
fluid as well as the equilibrium density profile of a ha
sphere fluid in a spherical cavity. Finally, Sec. IV summ
rizes the results.

II. APPROXIMATE ANALYTICAL EXPRESSIONS
FOR THE DIRECT CORRELATION FUNCTIONS

OF UNIFORM FLUIDS OF ALL ORDERS

In the weighted density approximation @16#,
C(1)(r ;@r#), the first order direct correlation function of non
uniform fluids is approximated as

C~1!~r ;@r#!5C0
~1!
„r̄~r !…, ~3!

whereC0
(1)( r̄(r )) is the first order direct correlation functio

of a uniform fluid for a weighted densityr̄(r ) defined as

r̄~r !5E dr 8r~r 8!w„ur2r 8u; r̄~r !…. ~4!

In the simple weighted density approximation@33#, r̄(r )
in the ‘‘weighting function’’ w of Eq. ~4! is replaced byrb .
While the results obtained in this manner are more appro
mate than those obtained in Ref.@16#, this approximation
allows us to derive simple expressions for the DCFs of
orders as the present paper demonstrates. The resu
weighting functionw is required to satisfy the usual norma
ization condition

E dr8w~ ur2r 8u;rb!51 ~5!

and the unique specification ofw follows from the relation-
ship:

limr~r !→rbF d

dr~r 8!
C~1!~r ;@r#!G5C0

~2!~ ur2r 8u;rb!. ~6!

Equation~6! together with Eqs.~3!–~5! provide the follow-
ing form for the weighting function:

w~ ur2r 8u;rb!5
C0

~2!~ ur2r 8u;rb!

C0
~1!8~rb!

. ~7!

Approximate expressions for the DCFs of all orders c
be derived on the basis of the equation

C0
~n!~r ,r1 ,...,rn21 ;rb!5 limr~r !→rbF dn21C~1!~r ;@r#!

dr~r1!¯dr~rn21!G
~8!

which leads to
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2706 PRE 61SHIQI ZHOU AND ELI RUCKENSTEIN
C0
~n!~r ,r1 ,...,rn21 ;rb!

5w~r ,r1 ;rb!¯w~r ,rn21 ;rb!C0
~1!~n21!

~rb!

5
C0

~1!~n21!
~rb!

@C0
~1!8~rb!#n21

C0
~2!~r ,r1 ;rb!¯C0

~2!~r ,rn21 ;rb!

n>2. ~9!

For n53, Eq. ~9! yields

C0
~3!~r ,r1 ,r2 ;rb!5w~r ,r1 ;rb!w~r ,r2 ;rb!C0

~1!9~rb!

5
C0

~1!9~rb!

@C0
~1!8~rb!#2

C0
~2!~r ,r1 ;rb!C0

~2!~r ,r2 ;rb!

~10!

which in the Fourier space becomes

C0
~3!~k,k8;rb!5

C0
~1!9~rb!

@C0
~1!8~rb!#2

C0
~2!~k;rb!C0

~2!~k8;rb!.

~11!

All the direct correlation functions should be symmetric
however, Eqs.~9!, ~10!, and~11! are symmetrical only in the
special cases in which the magnitudes of the wave vec
are equal. This deficiency can be corrected@see Eqs.~12! and
~23!#.

Equation~11! was used to calculateC0
(3) for a hard sphere

liquid by employing the Percus-Yevick approximations f
C0

(2)(ur2r 8u;rb) andC0
(1)(rb). The results are plotted in Fig

1 versuska, wherea5(3/4prb)1/3, for the special caseuku
5uk8u; for comparison the MD data@29# for soft spheres are
also included. The densityrbs350.871 at which the hard
sphereC0

(3) was computed, was selected to ensure agreem
with the BHP soft sphere approximation@29# at k50. Figure
1 shows that the dependence ofC0

(3) on the wave-vector

FIG. 1. Three-particle direct correlation function~DCF! C0
(3) vs

ka for wave vectors of equal magnitude. The curve represents
present approximation for hard sphere; the dots are the MD da
BHP for soft spheres@29#.
,

rs

nt

magnitude is in satisfactory agreement with the MD data
within the statistical uncertainty of the MD data.

As suggested previously@31#, Eq. ~11! can be made sym
metrical using the following simple symmetry requireme
on Eq.~11!:

C0
~3!~k,k8;rb!5

1

3
@C0

~3!~k,k8;rb!1C0
~3!~k,uk1k8u;rb!

1C0
~3!~k8,uk1k8u;rb!#. ~12!

Equation~11! combined with Eq.~12! has a form similar to
Eq. ~5! in Ref. @32#. In Figs. 2–4, theC0

(3) given by Eq.~12!
is plotted for uku5uk8u and various choices of the wave
vector magnitude, at a packing fractionh5rbps3/6
50.45; also included are the Monte Carlo~MC! simulations
for a hard-sphere fluid with two standard deviation error b
@34# and the results of Eq.~5! of Ref. @32#. The predictions of
Eq. ~12! are not in complete agreement with the MC da
but they are almost comparable to those of Eq.~5! in Ref.

e
of

FIG. 2. Three-particle direct correlation functio
C0

(3)(k,cosu;rb) for uku5uk8u[k52.3045 and a packing fraction
h50.45; u is the angle betweenk and k8. The dotted curve pre-
sents the present approximation, the long-dashed curve Eq.~5! in
Ref. @32#, and the dots are the simulation results with two stand
deviation errors bars@34#.

FIG. 3. The same as in Fig. 2, but fork55.153.



ca

t

e

le

er,
,
d 2,
in
ues
he

by

ity
ect
e-

also
of

;
ard

n
e

PRE 61 2707HIGH-ORDER DIRECT CORRELATION FUNCTIONS OF . . .
@32#. From Figs. 2–4 one can observe that asuku5uk8u5k
increases, the discrepancy increases; this is expected be
the present approximation@Eq. ~11! combined with Eq.~12!#
satisfies Eq.~2! only for uku5uk8u50:

C0
~3!~0,0;rb!5

C0
~1!9~rb!

@C0
~1!8~rb!#2

C0
~2!~0;rb!C0

~2!~0;rb!

5
C0

~1!9~rb!

@C0
~1!8~rb!#2

C0
~1!8~rb!C0

~1!8~rb!

5C0
~2!8~0;rb!. ~13!

It should be noted that the approximate expressions
Refs. @29,30# satisfied Eq.~2! only for uku5uk8u50 andk
52k8, while that of Ref.@31# only for uku5uk8u50. It is
worth emphasizing that both the present equation and tha
Ref. @31# are based on the WDA approximation@16#, the
former involving the additional approximation due to th
substitution ofr̄(r ) in the ‘‘weighting function’’ w by rb .
However, that simplification, allowed us to obtain simp

FIG. 5. Approximate four- and five-particle direct correlatio
functions~DCFs! vs ka for wave vectors of equal magnitude. Th
three-particle function is also included for comparison.

FIG. 4. The same as in Fig. 2, but fork57.0404.
use

of

of

expressions for the direct correlation functions of any ord
while that of Ref.@31#, which are given up to the fifth order
are very complex. In some cases, as shown in Figs. 1 an
our approximations do not introduce major errors, while
others, shown in Figs. 3 and 4 they produce errors for val
of cos(u) near21. However, as shown later in this paper, t
accuracy can be improved both by regardingrb in the de-
rivatives of C0

(1)(rb) as an adjustable parameter and/or
symmetrizing the basic equation~9! as in Eq.~23!. While our
approximation introduces some inaccuracies, its simplic
allows to extract some information about any order dir
correlation function. In Fig. 5, the three, four, and fiv
particle DCFs are plotted versuska for a uniform hard-
sphere fluid~at a densityrbs350.871! for small values ofk;
Fig. 6 presents the results for large values ofk. From Fig. 5
one can see that the absolute value ofC0

(n) at k50 increases
markedly as the order increases; the same behavior is
revealed by Fig. 7 where the normalized functions
C0

(n)(k;rb)/C0
(n)(0;rb) are plotted forn52,3,4,5. From Fig.

6 one can observe that the detailed structure ofC0
(n)(k;rb) is

increasingly lost with increasingk when the order is raised
this occurs because the direct correlation function of h
sphere fluids is short range.

FIG. 6. The same as in Fig. 2, but for large wave vectors.

FIG. 7. Normalized approximate DCFs vska for wave vectors
of equal magnitude.
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III. HIGH-ORDER PERTURBATIVE DENSITY
FUNCTIONAL THEORY FOR NONUNIFORM FLUIDS

Let us consider a classical fluid at a fixed temperat
kT5b21 and chemical potentialm in an external field
wext(r ). In DFT, the density profile of an inhomogeneo
fluid is given by the equation

r~r !5rb exp@2bwext~r !1C~1!~r ;@r#!2C0
~1!~rb!#.

~14!

Expanding the first-order DCF of a nonuniform fluid abo
an uniform fluid, one can write

C~1!~r ;@r#!5C0
~1!~rb!1E dr1„r~r1!2rb…C0

~2!~r ,r1 ;rb!

1 (
n53

}
1

~n21!! E dr1E dr2¯E drn21

3 )
m51

n21

@r~rm!2rb#C0
~n!~r ,r1 ,...,rn21 ;rb!.

~15!

Substituting expressions~9! for C0
(n)(r ,r1 ,...,rn21 ;rb) in

Eq. ~15!, yields

C~1!~r ;@r#!5C0
~1!~rb!1 (

n52

}
1

~n21!!

C0
~1!~n21!

~rb!

@C0
~1!8~rb!#n21

3F E dr 8C0
~2!~r ,r 8;rb!„r~r 8!2rb…Gn21

,

~16!

and the density profile equation acquires the form

r~r !5rb expS 2bwext~r !1 (
n52

}
1

~n21!!

C0
~1!~n21!

~rb!

@C0
~1!8~rb!#n21

3F E dr 8C0
~2!~r ,r 8;rb!„r~r 8!2rb…Gn21D . ~17!

Let us consider a homogeneous bulk hard sphere fluid
select one of the molecules considered located in the or
as a test molecule; the pair potentialf(r ) between the tes
molecule and any other molecule is regarded as the exte
potentialwext(r )

f~r !5H `, r ,s

0, r .s.
~18!

The resulting nonuniform density profile around the test m
ecule is given by the expression@35#

r~r !5rbg~r !, ~19!

where g(r ) is the radial distribution function of the bul
fluid. Thus, for this special type of inhomogeneity, Eq.~17!
provides the following equation forg(r ):
e

t

nd
in

al

l-

g~r !5expS 2bf~r !1 (
n52

} rb
n21

~n21!!

C0
~1!~n21!

~rb!

@C0
~1!8~rb!#n21

3F E dr 8C0
~2!~r ,r 8;rb!„g~r 8!21…Gn21D . ~20!

If the expansion in Eq.~20! is truncated at the second orde
one obtains

g~r !5expF2bf~r !1rbE dr 8C0
~2!~r ,r 8;rb!„g~r 8!21…G .

~21!

Combining Eq.~21! with the Ornstein-Zernike~OZ! equa-
tion

g~r !215C0
~2!~r ;rb!1rbE dr 8C0

~2!~r ,r 8;rb!„g~r 8!21…

leads to

g~r !5exp@2bf~r !1g~r !212C0
~2!~r ;rb!# ~22!

which represents the hypernetted-chain~HNC! closure of the
OZ equation. Equation~20! with the expansion truncated a
different orders was solved in spherical coordinates and
calculations indicated that the predictions of Eq.~20! with
the expansion truncated at the third order was in better ag
ment with simulation data than that truncated at the sec
order; at the fourth order the accuracy was decreased, w
at the fifth order the accuracy was increased. The predict
of the fifth-order PDFT were almost identical to those of t
sixth-order PDFT. In Fig. 8, the predictions of Eq.~20! with
the expansion truncated at the second and the fifth order
plotted for a bulk densityrbs350.6; the simulation data
@36# are also included for comparison. Figure 8 shows t
the predictions of Eq.~20! with the expansion truncated a
the fifth order are still unsatisfactory at and near the con
point. There are two reasons for the discrepancy:~1! the lack
of symmetry with respect tor ,r1 ,...,rn21 in the expressions
of the high-order direct correlation functions Eq.~9! on
which Eq. ~20! is based and~2! the approximation made in
the calculation of the weighting functionw. Consequently,
there are two ways to improve Eq.~20!: one is to symmetrize
expression~9!, and another one is to regardrb in the deriva-
tives of C0

(1)(rb) as an adjustable parameter. Consequen
we replace Eq.~9! by Eq.~23! which is the weighted Eq.~9!
and is symmetrical with respect to all argumen
r ,r1 ,...,rn21 ,

C0
~n!~r ,r1 ,...,rn21 ;rb!

5C0
~n!~r0 ,r ,r1 ,...,rn22 ;rb!

5E C0
~n!~r0 ,r ,r1 ,...,rn22 ;rb!w~r0 ,rn21 ;rb!dr0

5
C0

~1!~n21!
~rb!

@C0
~1!8~rb!#n

E C0
~2!~r0 ,r ;rb!C0

~2!~r0 ,r1 ;rb!¯C0
~2!

3~r0 ,rn22 ;rb!C0
~2!~r0 ,rn21 ;rb!dr0 ,

n>3. ~23!
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The substitution of Eq.~23! into Eq. ~15! yields

C~1!~r ;@r#!5C0
~1!~rb!1E dr1„r~r1!2rb…C0

~2!~r ,r1 ;rb!

1 (
n53

} C0
~1!~n21!

~rb!

~n21!! @C0
~1!8~rb!#n

E C0
~2!~r ,r 9;rb!

3F E C0
~2!~r 8,r 9;rb!„r~r 8!2rb…dr 8Gn21

dr 9.

~24!

Using Eq.~24!, one obtains ther(r ) for a nonuniform fluid

FIG. 8. g(r ) for a uniform hard sphere fluid withrbs350.6.
The dashed curve is given by Eq.~20! with the expansion truncate
at the second order, the dotted line is given by Eq.~20! with the
expansion truncated at the fifth order, the dot-dashed curve is g
by Eq. ~26! with the expansion truncated at the fifth order, and
dots represent the simulation data@36#.

FIG. 9. g(r ) for a uniform hard sphere fluid withrbs350.6.
The curve is given by Eq.~26! with the expansion truncated at th
fifth order andrb as an adjusted parameter, and the dots repre
the simulation data@36#.
r~r !5rb expS 2bwext~r !1E dr1„r~r1!2rb…C0
~2!~r ,r1 ;rb!

1 (
n53

} C0
~1!~n21!

~rb!

~n21!! @C0
~1!8~rb!#n

E C0
~2!~r ,r 9;rb!

3F E C0
~2!~r 8,r 9;rb!„r~r 8!2rb…dr 8Gn21

dr 9D , ~25!

and theg(r ) for a uniform fluid:

g~r !5expS 2bf~r !1rbE dr1„g~r1!21…C0
~2!~r ,r1 ;rb!

1 (
n53

} rb
n21C0

~1!~n21!
~rb!

~n21!! @C0
~1!8~rb!#n

E C0
~2!~r ,r 9;rb!

3F E C0
~2!~r 8,r 9;rb!„g~r 8!21…dr 8Gn21

dr 9D . ~26!

Figure 8 presents the predictions of Eq.~26! for an expansion
truncated at the fifth order and shows that they are impro
by imposing the symmetry condition on the expressions
the high order direct correlation functions. However, an a
ditional improvement is achieved by regardingrb in the de-
rivatives ofC0

(1)(rb) and only in these derivatives as an a
justable parameter, determined by equating the vi
pressure predicted by Eq.~26! according to the formula

bpv

rb
512

2prbb

3 E
0

}

g~r !
df~r !

dr
r 3dr ~27!

to the pressure given by the Carnahan-Starling equation@37#

bpcs

rb
5

11h1h22h3

~12h!3 , ~28!

whereh5rbps3/6 is the packing fraction. Figures 9 and 1
present the predictions of Eq.~26! for an expansion truncate
at the fifth order and an adjusted parameterrb determined as

en

nt

FIG. 10. The same as in Fig. 9, but forrbs350.8.
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2710 PRE 61SHIQI ZHOU AND ELI RUCKENSTEIN
above, as well as the simulation data@36#. They show that
the agreement is much improved.

Equation~25! will be now applied to a hard sphere flui
in a spherical cavity with a hard wall and radiusR1s/2. In
this case, the density profile equation has the form

r~r !5rb expS 2bwext~r !1E dr1„r~r1!2rb…C0
~2!~r ,r1 ;rb!

1 (
n53

} C0
~1!~n21!

~rb!

~n21!! @C0
~1!8~rb!#n

E C0
~2!~r ,r 9;rb!

3F E C0
~2!~r 8,r 9;rb!„r~r 8!2rb…dr 8Gn21

dr 9D ,

ur u,R,50, ur u.R, ~29!

where

wext~r !5`, ur u.R

50, ur u,R ~30!

and the densityrb is a bulk density unaffected by the exte
nal field due to the cavity wall@hence at a position far awa
from the cavity wall (ur u→`)#. Figures 11 and 12 presen

FIG. 11. Density profile of a hard sphere fluid (rbs350.62)
confined in a spherical cavity. The dots represent the simula
data@38#, and the curve the predictions of Eq.~29!.
s

the predictions of Eq.~29! for an expansion truncated at th
fifth order and with an adjustedrb in the derivatives of
C0

(1)(rb) for two densities andR54.5s, as well as the com-
puter simulation data@38#. BecauseFex@r(r )# is a universal
functional for systems involving pairwise additive intera
tions and independent of the external potential respons
for the inhomogeneity, it is reasonable to consider that
adjustedrb is equal in this case to that obtained above for
radial distribution function in a uniform system; of cours
rb at infinity for the former is equal to the bulkrb in the
latter @the adjustedrb is used only in the derivatives o
C0

(1)(rb)#. Figures 11 and 12 show that the predictions of t
present theory are in good agreement with simulation d
and at least as good as the results of earlier and more c
plex theories@39–40#.

IV. CONCLUSION

In summary, simple analytical expressions for the dir
correlation functions of all orders for uniform fluids are d
rived, and it is shown that the predictions of the third ord
direct correlation function are in reasonable agreement w
simulation data for hard sphere fluids. Further these exp
sions are employed to build a perturbative density functio
theory of nonuniform fluids beyond the second order who
predictions are in good agreement with simulation data
both a uniform hard sphere fluid and a nonuniform ha
sphere fluid in a spherical cavity.

n
FIG. 12. The same as in Fig. 11, but forrbs350.75.
.
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.

@1# R. G. Parr and W. Yang,Density Functional Theory of Atom
and Molecules~Oxford University Press, New York, 1989!.

@2# R. A. Lovett, C. Y. Mou, and F. P. Buff, J. Chem. Phys.65,
570 ~1976!.

@3# M. S. Wertheim, J. Chem. Phys.65, 2377~1976!.
@4# N. D. Mermin, Phys. Rev.137, A1441 ~1965!.
@5# J. T. Chayes and L. Chayes, J. Stat. Phys.36, 471 ~1984!.
@6# E. Kerlik and M. L. Rosinberg, Phys. Rev. A44, 5025~1991!.
@7# F. van Swol and J. R. Henderson, Phys. Rev. A40, 2567

~1989!.
@8# F. van Swol and J. R. Henderson, Phys. Rev. A43, 2932
~1991!.
@9# R. Evans, inLiquids at Interfaces, edited by J. Chervolin, J. F

Joanny, and J. Zinn-Justin~Elsevier, Amsterdam, 1989!.
@10# T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B19, 2775

~1979!.
@11# S. K. Ghosh and B. M. Deb, Phys. Rep.92, 1 ~1982!.
@12# T. Zixiang, L. E. Scriven, and H. T. Davis, J. Chem. Phys.95,

2659 ~1991!.
@13# J. G. Powles, G. Rickayzen, and M. L. Williams, Mol. Phy

64, 33 ~1988!.
@14# Z. Tan, U. Marini Bettolo Marconi, F. van Swol, and K. E



n,

n,

.

.

l.

PRE 61 2711HIGH-ORDER DIRECT CORRELATION FUNCTIONS OF . . .
Gubbins, J. Chem. Phys.90, 3704~1989!.
@15# A. R. Denton and N. W. Ashcroft, Phys. Rev. A42, 7312

~1990!.
@16# A. R. Denton and N. W. Ashcroft, Phys. Rev. A44, 8242

~1991!.
@17# C. N. Patra and S. K. Ghosh, Phys. Rev. E48, 1154~1993!.
@18# C. N. Patra and S. K. Ghosh, Phys. Rev. E47, 4088~1993!.
@19# N. Choudhury and S. K. Ghosh, J. Chem. Phys.104, 9563

~1996!.
@20# N. Choudhury and S. K. Ghosh, Phys. Rev. E53, 3847~1996!.
@21# A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys.74, 2559

~1981!.
@22# A. R. Denton and N. W. Ashcroft, Phys. Rev. A39, 4701

~1989!.
@23# B. B. Laird and D. M. Kroll, Phys. Rev. A42, 4810~1990!.
@24# J. L. Barrat, J. P. Hansen, G. Pastore, and E. M. Waisma

Chem. Phys.86, 6360~1987!.
@25# W. A. Curtin, J. Chem. Phys.88, 7050~1988!.
@26# M. Baus and J. L. Colot, Mol. Phys.55, 653 ~1985!.
@27# J. L. Barrat, J. P. Hansen, G. Pastore, and E. M. Waisma

Chem. Phys.86, 6360~1987!.
@28# M. Rovere and M. P. Tosi, J. Phys. C18, 3445~1985!.
J.

J.

@29# J. L. Barrat, J. P. Hansen, and G. Pastore, Phys. Rev. Lett58,
2075 ~1987!.

@30# W. A. Curtin and N. W. Ashcroft, Phys. Rev. Lett.59, 2385
~1987!.

@31# A. R. Denton and N. W. Ashcroft, Phys. Rev. A39, 426
~1989!.

@32# A. Khein and N. W. Ashcroft, Phys. Rev. E59, 1803~1999!.
@33# S. Zhou, J. Chem. Phys.110, 2140~1999!.
@34# Y. Rosenfeld, D. Levesque, and J. J. Weis, J. Chem. Phys92,

6818 ~1990!.
@35# J. K. Percus, inThe Equilibrium Theory of Classical Fluids,

edited by H. L. Frisch and A. L. Lebowitz~Benjamin, New
York, 1964!, p. 113.

@36# J. A. Barker and D. Henderson, Mol. Phys.21, 187 ~1971!.
@37# N. F. Carnahan and K. E. Starling, J. Chem. Phys.51, 635

~1969!.
@38# M. Calleja, A. N. North, J. G. Powles, and G. Rickayzen, Mo

Phys.73, 973 ~1991!.
@39# S. C. Kim, J. K. Suh, and S. H. Suh, Mol. Phys.79, 1369

~1993!.
@40# S. C. Kim and S. H. Suh, J. Chem. Phys.104, 7233~1996!.


